If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-49=0
a = 1; b = 5; c = -49;
Δ = b2-4ac
Δ = 52-4·1·(-49)
Δ = 221
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{221}}{2*1}=\frac{-5-\sqrt{221}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{221}}{2*1}=\frac{-5+\sqrt{221}}{2} $
| p+10=24p= | | w+60=90w= | | w+7=14w= | | 16^x=144 | | 1/5x+3=2/3x-4 | | 2x²-6x-28=0 | | x=2x+12+2x+5+7x-1 | | 7w=14w= | | 5(x+6)=9x+30 | | 3x+17≥=11 | | 9+x=11x= | | 2w+2=4w= | | w-5=5w= | | 4e=16e= | | 0.15(3n+2)+0.05=0.5(0.9n+0.7 | | 3w+3=9w= | | 1-27x=39+19x | | (1/3x^2-9)^2=0 | | 12=q-8 | | 2w+20=40w= | | 12=q/8 | | 1-27x=39-19x | | 2(q+3)+3q-4)=9 | | 5.88+8.9u=1.4u-5.37 | | b.5=250 | | 3x+16+2x+8+8x+18=180 | | 28n+56=168 | | 3x+4=2x+6(3-x) | | 9-2p=7p+12 | | 15-7x=x² | | 3/n=9/36* | | Z+2(z*3)=25 |